Journal of Pedagogical Sociology and Psychology
Development of interactive PowerPoint simulations as part of an online laboratory on the construction and identification of a genetically modified organism for non-science majors
Thomas Smith 1, Michael Burfield 1, Brian Michael Forster 2
More Detail
1 Environmental Science and Sustainability Program, Saint Joseph’s University, Philadelphia, United States
2 College of Arts & Sciences, Saint Joseph’s University, Philadelphia, United States
Open Access Full Text (PDF)
ARTICLE INFO

Journal of Pedagogical Sociology and Psychology, 2023 - Volume 5 Issue 4, pp. 57-67
https://doi.org/10.33902/jpsp.20232000

Article Type: Research Article

Published Online: 18 Nov 2023

Views: 1013 | Downloads: 484

ABSTRACT
During the COVID-19 pandemic, on-ground laboratory classes switched to online learning.  Many of these online laboratory activities focused less on laboratory techniques and more on data analysis.  We developed an online laboratory activity for non-science majors focusing on the topic of genetically modified organisms.  To allow online students the experience of learning first-hand techniques that they would have learned in the lab, we have designed interactive PowerPoint simulations covering the techniques of gel electrophoresis, constructing various GMOs and enzyme linked immunosorbent assay.  Students complete each of these activities in order to collect data and determine whether a particular plant has undergone genetic modification.  These PowerPoints are modifiable to meet the specific needs of a particular course or lesson. 
KEYWORDS
In-text citation: (Smith et al., 2023)
Reference: Smith, T., Burfield, M., & Forster, B. M. (2023). Development of interactive PowerPoint simulations as part of an online laboratory on the construction and identification of a genetically modified organism for non-science majors. Journal of Pedagogical Sociology and Psychology, 5(4), 57-67. https://doi.org/10.33902/jpsp.20232000
In-text citation: (1), (2), (3), etc.
Reference: Smith T, Burfield M, Forster BM. Development of interactive PowerPoint simulations as part of an online laboratory on the construction and identification of a genetically modified organism for non-science majors. Journal of Pedagogical Sociology and Psychology. 2023;5(4), 57-67. https://doi.org/10.33902/jpsp.20232000
In-text citation: (1), (2), (3), etc.
Reference: Smith T, Burfield M, Forster BM. Development of interactive PowerPoint simulations as part of an online laboratory on the construction and identification of a genetically modified organism for non-science majors. Journal of Pedagogical Sociology and Psychology. 2023;5(4):57-67. https://doi.org/10.33902/jpsp.20232000
In-text citation: (Smith et al., 2023)
Reference: Smith, Thomas, Michael Burfield, and Brian Michael Forster. "Development of interactive PowerPoint simulations as part of an online laboratory on the construction and identification of a genetically modified organism for non-science majors". Journal of Pedagogical Sociology and Psychology 2023 5 no. 4 (2023): 57-67. https://doi.org/10.33902/jpsp.20232000
In-text citation: (Smith et al., 2023)
Reference: Smith, T., Burfield, M., and Forster, B. M. (2023). Development of interactive PowerPoint simulations as part of an online laboratory on the construction and identification of a genetically modified organism for non-science majors. Journal of Pedagogical Sociology and Psychology, 5(4), pp. 57-67. https://doi.org/10.33902/jpsp.20232000
In-text citation: (Smith et al., 2023)
Reference: Smith, Thomas et al. "Development of interactive PowerPoint simulations as part of an online laboratory on the construction and identification of a genetically modified organism for non-science majors". Journal of Pedagogical Sociology and Psychology, vol. 5, no. 4, 2023, pp. 57-67. https://doi.org/10.33902/jpsp.20232000
REFERENCES
  • Adams, D. L. (1998). What works in the nonmajors' science laboratory. Journal of College Science Teaching, 28(2), 103-108.
  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/s0022-2836(05)80360-2
  • Barry, G. F., Kishore, G. M., Padgette, S. R., & Stallings, W. C. (1997). Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases (Patent No. US5633435A). United States.
  • Buchberger, A. R., Evans, T., & Doolittle, P. (2020). Analytical Chemistry Online? Lessons learned from transitioning a project lab online due to COVID-19. Journal of Chemical Education, 97(9), 2976–2980. https://doi.org/10.1021/acs.jchemed.0c00799
  • Chandrasekaran, A. R. (2020). Transitioning undergraduate research from wet lab to the virtual in the wake of a pandemic. Biochemistry and Molecular Biology Education, 48(5), 436–438. https://doi.org/10.1002/bmb.21386
  • Clark, M. F., Lister, R. M., & Bar-Joseph, M. (1986). Elisa Techniques. Methods in Enzymology, 118, 742–766. https://doi.org/10.1016/0076-6879(86)18114-6
  • Delgado, T., Bhark, S., & Donahue, J. (2020). Pandemic Teaching: Creating and teaching cell biology labs online during COVID-19. Biochemistry and Molecular Biology Education, 49(1), 32–37. https://doi.org/10.1002/bmb.21482
  • Deutch, C. E. (2019). Transformation of Escherichia coli with the pGLO Plasmid: Going beyond the Kit. The American Biology Teacher, 81(1), 52–55. https://doi.org/10.1525/abt.2019.81.1.52
  • Edmisten, K. (2016). What is the difference between genetically modified organisms and genetically engineered organisms? North Carolina State Extension News.
  • Entis, E. (1998). Aquadvantage salmon: A case study in transgenic food. Animal Biotechnology, 9(3), 165–170. https://doi.org/10.1080/10495399809525906
  • Gewin, V. (2020). Five tips for moving teaching online as COVID-19 takes hold. Nature, 580, 295–296. https://doi.org/10.1038/d41586-020-00896-7
  • He, K., Wang, Z., Zhou, D., Wen, L., Song, Y., & Yao, Z. (2003). Evaluation of transgenic bt corn for resistance to the Asian corn borer (lepidoptera: Pyralidae). Journal of Economic Entomology, 96(3), 935–940. https://doi.org/10.1093/jee/96.3.935
  • Inouye, S., & Tsuji, F. I. (1994). Evidence for redox forms of the Aequorea green fluorescent protein. FEBS Letters, 351(2), 211–214. https://doi.org/10.1016/0014-5793(94)00859-0
  • Kapoor, R.T. (2022). Genetically Modified Crops to Combat Climate Change and Environment Protection: Current Status and Future Perspectives. In S. Arora, A. Kumar, S. Ogita, & Y. Y. Yau (Eds.), Biotechnological Innovations for Environmental Bioremediation (pp. 527-543). Springer. https://doi.org/10.1007/978-981-16-9001-3_22
  • Kumar, K., Gambhir, G., Dass, A., Tripathi, A.K., Singh, A., Jha, A.K., Yadava, P., Choudhary, M., & Rakshit, S. (2020). Genetically modified crops: current status and future prospects. Planta, 251, Article 91. https://doi.org/10.1007/s00425-020-03372-8
  • Lee, P. Y., Costumbrado, J., Hsu, C.-Y., & Kim, Y. H. (2012). Agarose gel electrophoresis for the separation of DNA fragments. Journal of Visualized Experiments, 62, 3923. https://doi.org/10.3791/3923-v
  • Liang, C. (2016). Genetically modified crops with drought tolerance: Achievements, challenges, and perspectives. Drought Stress Tolerance in Plants, 2, 531–547. https://doi.org/10.1007/978-3-319-32423-4_19
  • McClanahan, E. B., & McClanahan, L. L. (2002). Active learning in a non-majors biology class: Lessons learned. College Teaching, 50(3), 92–96. https://doi.org/10.1080/87567550209595884
  • Mullis, K. B., & Faloona, F. A. (1987). Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods in Enzymology, 155, 335–350. https://doi.org/10.1016/0076-6879(87)55023-6
  • Nastase, A. J., & Scharmann, L.C. (1991). Nonmajors’ Biology: Enhanced Curricular Considerations. The American Biology Teacher, 53(1), 31–36. https://doi.org/10.2307/4449210
  • National Academies of Sciences, Engineering, and Medicine. (2016). Genetically engineered crops: experiences and prospects. The National Academies Press. https://doi.org/10.17226/23395
  • Padgette, S. R., Kolacz, K. H., Delannay, X., Re, D. B., LaVallee, B. J., Tinius, C. N., Rhodes, W. K., Otero, Y. I., Barry, G. F., Eichholtz, D. A., Peschke, V. M., Nida, D. L., Taylor, N. B., & Kishore, G. M. (1995). Development, Identification, and Characterization of a Glyphosate-Tolerant Soybean Line. Crop Science, 35(5), cropsci1995. https://doi.org/10.2135/cropsci1995.0011183X003500050032x
  • Ray, S., & Srivastava, S. (2020). Virtualization of Science Education: A Lesson from the COVID-19 pandemic. Journal of Proteins and Proteomics, 11(2), 77–80. https://doi.org/10.1007/s42485-020-00038-7
  • Redman, M., King, A., Watson, C., & King, D. (2016). What is CRISPR/Cas9?. Archives of disease in childhood. Education and practice edition, 101(4), 213–215. https://doi.org/10.1136/archdischild-2016-310459
  • Richardson, S. D., & Kimura, S. Y. (2020). Water analysis: emerging contaminants and current issues. Analytical chemistry, 92(1), 473–505. https://doi.org/10.1021/acs.analchem.9b05269
  • Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., & Erlich, H. A. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 239, 487–491. https://doi.org/10.1126/science.239.4839.487
  • Tabata, S., Kaneko, T., Nakamura, Y., Kotani, H., Kato, T., Asamizu, E., Miyajima, N., Sasamoto, S., Kimura, T., Hosouchi, T., Kawashima, K., Kohara, M., Matsumoto, M., Matsuno, A., Muraki, A., Nakayama, S., Nakazaki, N., Naruo, K., Okumura, S., Shinpo, S. (2000). Sequence and analysis of chromosome 5 of the plant Arabidopsis thaliana. Nature, 408, 823–826. https://doi.org/10.1038/35048507
  • Waltz, E. (2016). GM salmon declared fit for dinner plates. Nature Biotechnology, 34(1), 7–8. https://doi.org/10.1038/nbt0116-7a
  • Wright, S. I., Bi, I. V., Schroeder, S. G., Yamasaki, M., Doebley, J. F., McMullen, M. D., & Gaut, B. S. (2005). The effects of artificial selection on the maize genome. Science, 308, 1310–1314. https://doi.org/10.1126/science.1107891
  • Xiao, Q., Xia, J. H., Zhang, X. J., Li, Z., Wang, Y., Zhou, L., & Gui, J. F. (2014). Type-IV antifreeze proteins are essential for epiboly and convergence in gastrulation of zebrafish embryos. International Journal of Biological Sciences, 10(7), 715–732. https://doi.org/10.7150/ijbs.9126
  • Zhao, H.-L., Zhou, R.-L., Zhang, T.-H., & Zhao, X.-Y. (2006). Effects of desertification on soil and crop growth properties in Horqin Sandy Cropland of Inner Mongolia, North China. Soil and Tillage Research, 87(2), 175–185. https://doi.org/10.1016/j.still.2005.03.009
LICENSE
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.