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This study examines learning of derivative concept by using the ACE (Activities, Class discussions, and 
Exercises) teaching cycle. In this study, the concept of discrete derivative approach was used, in which a 
step-by-step method of differential sequence for functions defined on Z and Q is proposed. The purpose of 
this study was the effectiveness of using ACE teaching cycle in learning the concept of derivative. The 
present study was conducted using the pre- and post-test research design. This study was conducted on 42 
university students, 21 people from each of two experimental and control groups were chosen using real 
sampling and were distributed at random. The concept of the discrete derivative approach was taught to 
the experimental group using the ACE cycle in the Geogebra software environment and to the control 
group in a routine manner. A pre-test was taken at the beginning of the training course, and a post-test 
was taken from both groups at the end. The data were analyzed with an independent two-group t-test. 
The findings showed that the teaching approach with the use of the ACE teaching cycle in the Geogebra 
software environment facilitate on students' comprehension of the derivative concept. Therefore, the ACE 
teaching cycle, with the help of the software, can help in teaching calculus, especially the concept of 
derivative, to develop students' conceptual understanding.      
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1. Introduction 

Calculus is one of man’s most outstanding achievements (NCTM, 2000) which has played an 
important role in human civilization. The derivative is one of the essential basic concepts in 
differential and integral calculus, which is related to function, limit, and rate of change and has 
many applications in various sciences. In other words, the derivative is the heart of modern 
mathematics. This concept is given special attention because it is used in learning and teaching 
concepts such as antiderivative and integral. Forming the derivative concept, the learning process, 
and its progress can help solve students’ problems. Accordingly, it is possible to gain knowledge 
that will help teachers and professors to better teach this concept and other mathematical concepts 
in the direction of better and more stable learning for learners. There are three different 
interpretations of the concept of derivative. The first interpretation of the derivative is the slope of 
the tangent line to the curve at point 𝐴 =  (𝑎, 𝑓(𝑎)). Another interpretation of the derivative is the 
instantaneous rate of change of the function. In contrast, the physical meaning of the derivative 
refers to the speed and acceleration of a moving object at a moment in time. The third 
interpretation of the derivative as a function is where the formal definition of the function’s 

derivative 𝑓(𝑥) at the point 𝑥 =  𝑎 is equal to 𝑓′(𝑎) =  lim𝑥→𝑎
𝑓(𝑥)−𝑓(𝑎)

𝑥−𝑎
. The derivative is difficult 

for most students to understand the formal meanings of the limit, so its not possible accurately 
apply the definitions in different situations, can only solve intuitive problems, and do not have a 
deeper understanding of the concepts. Research has shown that Derivation is one of the most 
difficult concepts for students due to its complex definition and expression (Thompson, 1994; 
Zandieh, 2000). Some students do not get a proper conceptual understanding of the derivative 
even after completing calculus courses (Eisenherg, 1992). Most students misunderstand the slope 
of the line and the tangent to the curve and their relationship (Asiala et al., 1997; Feudel & Biehler, 
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2021; Feudel, 2019; Ubuz, 2007). Most learners can coordinate and communicate between the two 
features of the derivative function and its primary function (Haciomeroglu & Chicken, 2012). 
Previous research on derivation concepts has shown that most students have little conceptual or 
intuitive knowledge of derivations, even though they have sufficient procedural knowledge of 
derivations increase (Asiala et al., 1997; Clark et al., 1997; Dominguez et al., 2017; Orton, 1983; Tall, 
1993; Thompson, 1994; Zandieh, 2000).  According to the research mentioned the difficulties of 
understanding the concept of derivative, Weigand (2014) introduces a new approach to 
understanding the concept of derivative.   Weigand (2014) we present a stepwise discrete approach 
to better understand the concept of derivation by continuous differentiation of functions defined in 
the discrete domains Z and Q and subsequent generalization to the R domain. The advantage of 
this method is that it does not present the concept of limit at the beginning of the work, and the 
concept of the rate of change is expressed using discrete examples. Therefore, discrete Zn functions 
are presented to interpret the function f's derivative at a specific point of the graph f and, as a 
result, calculate the instantaneous level of modification in the discrete approach of the sequence of 
decisive gradients.  

APOS (Actions, Processes, Objects, and Schemas) theory explores students' understanding of 
mathematical concepts. According to this theory, to understand mathematical concepts, learners 
must have a mental structure about actions, processes, objects, and schemes. Without such a 
mental structure, learning this concept is almost impossible (Arnon et al., 2014). APOS Theory's 
educational strategy for teaching mathematical concepts is called the ACE Cycle and includes 
computer-based activities, classroom discussions, and exercises. The purpose of this study was to 
answer the following questions: 
What is the effect of using the discrete approach by using the ACE teaching cycle in the Geogebra 
software environment on the improved comprehension of students to learn the concept of the 
derivative? 

2. Literature Review 

Research using the APOS-ACE theory has shown that the computer-aided ACE cycle can help 
students' understanding of mathematical concepts. Borji and Martinez-Planell (2019) used the 
APOS-ACE theory to investigate students' comprehension of the implicit function and its 
derivative. First, a genetic decomposition (GD) was proposed to understand the implicit function 
and its derivative, and then it was designed and implemented using the proposed genetic 
decomposition of the ACE cycle to help students make mental constructs they lacked. The results 
showed that the ACE teaching cycle was effective in promoting students' understanding of 
implicit functions and their derivation.   

The APOS-ACE theory was employed by Borji et al. (2018) in an effort to enhance students' 
understanding of function derivatives visually. The ACE cycle, which was created using the Maple 
software, was taught to the experimental group for this purpose, whereas the control group 
learned about derivatives the old-fashioned way, through lectures. By contrasting the performance 
of the experimental group with that of the control group, the effectiveness of this training was 
evaluated. The findings showed that the experimental group students better understood the 
concept of derivatives than the control group. 

 Borji and Voskoglou (2017) designed an ACE cycle for instructing polar coordinates. The 
designed ACE cycle was employed on the students of the experimental group in one of Iran's 
universities. Results from the experimental group and the control group were contrasted, in which 
the control group was taught polar coordinates in a traditional lecture-based way to investigate the 
efficiency of the ACE cycle. The outcomes showed that the experimental group students had a 
better and more appropriate understanding of polar and Cartesian coordinates than the control 
group. Siyepu (2013) used APOS theory to analyze students' mistakes in learning exponential, 
logarithmic, and trigonometric derivatives. Using a case study approach, we investigated twenty 
students participated in a graduate school program at a technical university. As a result, we found 
that most students' level of understanding is in the action phase, or the contradiction between the 
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action phase and the process of APOS theory. The ACE teaching cycle should be designed and 
implemented to enable students to develop the schemes they need. 

Cetin (2009) used the APOS theory to examine first-year university students' understanding of 
the concept of limit. The teaching method was implemented based on teaching experiences and 
with the help of APOS theory ideas and a case study to answer the research questions. A total of 25 
first-year students of one of the universities in Turkey who had the general mathematics course 1 
in the fall semester of 2007-2008 participated in this research. Every week, the students worked in 
groups for 3 hours in the computer lab and attended the class for 6 hours. In the computer lab, 
programming activities related to the concept of limit were worked on before the concept of limit 
was taught to them in the primary classroom. Open-ended questions were designed as a pre-test 
and post-test and were taken from students before and after teaching to check the changes in their 
understanding. At the end of teaching, interactive sessions were done with students to gather 
qualitative info. The data were quantitatively and qualitatively analyzed by the researcher under 
the theory of APOS. The results showed that the students' thinking was consistent with what was 
predicted in the genetic analysis. In addition, the teaching given to the students played an 
important role in developing their comprehension of the concept of limit. Weller et al. (2009) 
designed a decimal repetition unit for teachers to understand the relationship between rational 
numbers (fraction or integer) and their decimal expansion using the APOS theory pedagogy 
strategy in the ACE teaching cycle (activities, class discussions, and exercises). Compared to the 
control group, the ACE teaching cycle group has made significant progress understanding the 
relationship between rational numbers and their decimal expansions. Asiala et al. (1997) used the 
APOS theory to analyze students' graphic apprehension of the derivative concept. Interactive 
sessions on derivatives were conducted c. Students trained through this ACE teaching cycle 
demonstrated strong process understanding in understanding the symbol f(x) and interpreting the 
relationship between the derivative, its graph, and the function's graph. 

3. Background 

This section describes the two theoretical frameworks used in the research (discrete derivative 
approach, APOS theory). 

3.1. Discrete Derivative Approach 

Weigand (2014) introduced the concept of a discrete approach to calculus where, by considering 
discrete functions, an average rate of change is proposed based on various outcomes. Weigand 
(2014) stated that working with the discrete sequence and its differential sequence can be a basic 
idea for developing an understanding of the concepts of variational and derivative functions. 
Weigand (2014) stated about the discrete approach that "In developing this first level of 
conception, the concept of boundaries is only used in an intuitive sense. All computations can be 
performed at the discrete algebraic level. This discrete approach to the notion of derivatives is a 
preparation for understanding the derivatives of real functions.  This concept provides an 
improved comprehension of the meaning of a variation or differential fraction, implements limits 
or approximation processes by clearly Manipulating sequences (or discrete functions) in this sense 
is beyond intuitive understanding of the limits". Weigand (2014) introduces five levels for 
applying the discrete approach to understand the concept of derivative.  

3.1.1. First level: differential sequences 

The purpose of this level is to familiarize the concept of sequential modification of 
∆𝑎𝑛 = 𝑎𝑛+1 + 𝑎𝑛(𝑛 ∈ 𝑁).  If ∆𝑛 = 1 can be considered as a rate of change used in real-life problems, 
such as the average air temperature each year, which may be shown in a table or graph. 
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3.2.2. Second level: the concept of (Quadratic) Z-functions 

Previously, the sequence was defined with domain N. Now the notion of the sequence is extended 
to functions defined on Z. The function f: Z→R is called the Z function. The functions y = f(z) are 
extended sequences defined on the numbers z∈  Z. 

Example 1: For the function 𝑓(𝑧) = 𝑧2 − 2𝑧 + 3, the differential Z function is as follows: 
𝐷𝑓(𝑧) = 𝑓(𝑧 + 1) − 𝑓(𝑧) = 2𝑧 + 1 − 2 

Example 2: For the function 𝑓(𝑧) = 𝑎𝑧2 + 𝑏𝑧 + 𝑐, 𝐷𝑓(𝑧) = 2𝑧 + 𝑎 + 𝑏. This can be obtained to find 

that 𝐷𝑓(z) is not dependent on the c parameter.  

3.2.3. Third level: polynomial Z-function 

This concept can be extended to polynomial functions of a higher degree. 

Example 3: For the function 𝑓(𝑧) = 𝑎𝑧3 + 𝑏𝑧2 + 𝑐𝑧 + 𝑑 we have  
𝐷𝑓(𝑧) = 3𝑎𝑧2 + (3𝑎 + 2𝑏)𝑧 + 𝑎 + 𝑏 + 𝑐. 𝐷𝑓 is a quadratic function that does not depend on the 

parameter d. 

2.3.4. Fourth level: Exponential function 

Example 4: For the exponential function 𝐸(𝑧) = 𝑎𝑧(𝑎 ∈ 𝑅+, 𝑧 ∈ 𝑍). The difference function is 
𝐷𝐸(𝑧) = 𝐸(𝑧 + 1) − 𝐸(𝑧) = 𝑎𝑧+1 − 𝑎𝑧 = 𝑎𝑧(𝑎 − 1) = 𝐸(𝑧)(𝑎 − 1).  To obtain DE(z), it is sufficient to 
multiply 𝐸(𝑧) by the factor (𝑎 −  1). 

2.3.5. Fifth Level : Transferring ideas from Z to Q and R 

This section selects the following domains, a subset of [-2,2]. 
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z10 ∈ Z10 and 𝑓 function is described as f10: Z10 → 𝑅. The intervals are limited to 1/10 instead of 1 
units to achieve the rate of change of successive values, and the differential fraction function Z10 is 
obtained:  

𝐷𝑓(𝑛)(𝑧𝑛) =
𝑓 (𝑧𝑛 +

1

𝑛
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, … }  

This problem can be generalized to 1/n in the longitudinal distances 𝑛 ∈ 𝑁, and the function 𝑍𝑛 
is the differential fraction of 𝐷𝑓(𝑛). 

𝐷𝑓(𝑛)(𝑧𝑛) =
𝑓 (𝑧𝑛 +

1

𝑛
) − 𝑓(𝑧𝑛)
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𝑛
, … }  

Example 5: For the quadratic function 𝑧, we have 𝐷𝑓(𝑧𝑛) = 2𝑎𝑧𝑛 + 𝑏 +
𝑎

𝑛
. Now, if 𝑛 → +∞: 𝐷𝑓(𝑧𝑛) =

2𝑎𝑧 + 𝑏 which is the derivative of the function. This idea is similar to the exponential 𝑍-function 
(𝐸(𝑧10) = 𝑎𝑧10), and its differential fraction function is: 

𝐷𝐸(𝑧10) =
𝐸 (𝑧10 +
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, 𝐸(𝑧10) will equal to 𝐷𝐸(𝑧10). Considering the exponential function 

𝐸(𝑧𝑛) = 𝑎𝑧𝑛: 

𝐷𝐸(𝑧𝑛) =
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But when 𝑛 → ∞, lim𝑛→∞
𝑎

1
𝑛 −1

1

𝑛

= 1. This means that it 𝐷𝐸(𝑧𝑛) is the derivative of the exponential 

function. In the following, the instantaneous change song is performed for 𝑥0 ∈ 𝐷 ⊆ R. We form 
the differential fraction sequence for the real difference of the value. 

𝐷𝑛(𝑥0) =
𝑓 (𝑥0 +

1

𝑛
) − 𝑓(𝑥0)

1

𝑛

   (𝑛 ∈ 𝑁) 

Example 6: At the point (𝑥0, 𝑓(𝑥0)) for the function 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, we have: 

𝐷𝑛(𝑥0) =
𝑓(𝑥0+

1

𝑛
)−𝑓(𝑥0)

1

𝑛

=
𝑎(𝑥0+

1

𝑛
)

2
+𝑏(𝑥0+

1

𝑛
)+𝑐−𝑎𝑥0

2−𝑏𝑥0−𝑐

1

𝑛

= 2𝑎𝑥0 + 𝑏 +
𝑎

𝑛
  

Therefore, the sequence 𝐷𝑛(x0) is interpreted according to the diagram f the decisive night 
sequence at one point. 

3.2. APOS theory 

As has been proven, APOS theory helps to elaborate the structure of some mathematical concepts, 
and established APOS theory helps to elaborate the structure of some mathematical concepts. 
APOS theory is according to Piaget's principle that a person uses certain mental mechanisms to 
build mental structures to learn different concepts, including mathematical concepts, and then 
uses these structures to solve problems in mathematics. According to this principle, a person can 
create a mental structure for each mathematical concept that is suitable for that concept and can be 
used for understanding, learning, and applying that concept (Arnon et al., 2014). The following 
central concept is used in APOS theory: 

3.2.1. Concept of action 

An action transforms a mathematical object that has already been constructed and is understood as 
an external component. This is an external operation because each transformation step must be 
explicitly performed by an external instruction.   Furthermore, each stage creates the next, so action 
steps cannot yet be imagined, and none can be excluded (for more on this, see Arnon et al., 2014). 

The most basic understanding of the derivative is its concept as an action, a repetition of mental 
acceptance or physical manipulation of objects by some researchers. At this stage of learning, 
students recognize derivative as a law. Therefore, a person at the action level, except for 
calculating the derivative rule (at specific points) and command with rules, cannot do more. 
Understanding the concept of the derivative of quadratic functions does not go beyond the scope 
of a practical understanding of the derivative of functions. All the mentioned cases require process 
or object perceptions or both together. Learners who can perform the procedures have understood 
the derivative in the form of action. For example, it can calculate the value f(2) by having the rule 
𝑓(𝑥) = 𝑥2 − 3𝑥. Therefore, learners who have a practical understanding of the derivative of a 
function need an expression like ′(𝑥) , and when the calculation of the derivative of the function 
𝑓(𝑥) = 𝑥3 requires clear math like, it will only be able to write 𝑓′(𝑥) = 3𝑥2. 

3.2.2. Concept of process 

When the learner reflects on the repeated action, it becomes Interiorization as a process. At this 
time, the learner has an internal structure to perform the same activity. An external stimulus does 
not necessarily guide an internal system that performs the same action, and the control is in the 
hands of the learner. There is a significant relationship with other mathematical knowledge, which 
allows process imagination and predict the results without the need for explicit implementation. 
Essential relationships in a process concept allow linking various demonstrations and process 
justifications. Other ways can be adjusted to form new processes. A process can be created by 
internalizing various activities and coordinating the subsequent process.  Compared to action, a 
process is understood as something internal and under the learner's control rather than a reaction 
to external stimuli. Generally, it is a practical process that happens entirely in the mind. 
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The next level of understanding the concept of derivative is process. This concept is a deeper 
comprehension of the concept of derivative, as something that takes something transforms it, 
produces something entirely new, gives it, and involves an explicit formula or rule. At this level of 
learning, students are willing to accept functions that involve fuzzy transformations. 

3.2.3. Concept of the object 

Suppose the learner can reflect on the actions that have been applied to a specific process and find 
out that each process can be considered a whole that can be changed (actions or processes). If these 
changes are made, it is said that the learner has understood the process in the form of an object. At 
this stage, the process is summarized as an object. A process or action on an object often requires 
splitting the object into the process from which it was derived. 

Summarizing processes into objects and splitting objects into their constituent processes can be 
seen in manipulations with derivatives of fixed and radical functions. For example, suppose a 
learner can write the derivative of the sum of several functions as the sum of the derivative of 
several functions. In that case, he has understood the function’s derivative as an object. 
Understanding the formal definition of mathematical concepts, such as function, limit, and 
derivative, is at this level. 

3.2.4. Scheme 

A cohesive combination of behaviors, procedures, objects, and other schemas connected to a 
particular mathematical notion is known as a mathematical schema. The schema is consistent in 
that the various components are connected in such a way that you can determine which issues are 
relevant to the schema.   

At this level, the learner can determine the critical and extremum points of the function and 
understand when f'(x) = 0. The derivative schema may include another schema, such as the 
function schema or the limit schema. The derivative scheme may also include different methods of 
the derivation of functions. In this case, one of the actions that can be applied to this schema is 
choosing the appropriate derivation method for the given problem. 

Genetic Decomposition [GD] Concepts related to APOS theory for analyzing students' 
understanding of mathematical concepts. Based on the Arnon et al. (2014), genetic analysis is a 
hypothetical model that explains the mental structures and mechanisms necessary for students to 
learn specific mathematical concepts. Genetic decomposition is described in terms of this theory's 
mental structures (action, process, object, and schema) and mechanisms (internalization, 
compression, and coordination). The genetic breakdown is not unique and may be presented as a 
concept. 

3.3. ACE cycle 

ACE teaching cycle is a pedagogical strategy commonly used in APOS theory based on 
cooperative learning Activities (A) and genetic decomposition, usually comprising students' usage 
of computers. Class discussions (C) help reflect and institutionalize the mathematics learned and 
Exercises (E) (Arnon et al., 2014).  

3.3.1. Activities 

The educational process of the ACE cycle takes place in the first step of the classroom in the 
computer workshop, where students participate exclusively as a team in completing tasks based 
on a computer program that has been prepared in advance to cultivate their mental constructions. 
Compared to other activities, the critical point in these activities is to pay attention to the heuristic 
nature of learning. According to Arnon et al. (2014) adopting a mathematical programming 
language can help students understand mathematical concepts more thoroughly. The activities 
planned in this section for teaching are based on the same genetic analysis for constructing a 
specific concept for teaching. 
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3.3.2. Class discussions 

Class discussions should be performed in the classroom after the educational implementation in 
the computer workshop and doing the activities. Students are grouped in teams in the class and 
reflect on and perform the same activities in the computer workshop. The teacher helps the groups 
by guiding the plan and providing the opportunity to reflect on the tasks and calculations. 

3.3.3. Exercises 

Students are assigned regular exercises to work on to internalize the learning of a concept, and 
they are expected to complete the exercises at home. In order to assist the continued development 
of the mental constructs identified by genetic analysis, these exercises comprise standardised 
challenges created to support computer-based activities and classroom discussion (Dubinsky et al., 
2013). The objectives of solving the exercises can be summarized as follows: 

1) Strengthening the ideas made by students. 
2) Reflecting on the concept they have learned. 
3) Thinking about the situation they want to study later. 

4. Method 

4.1. Research Design 

This quasi-experimental study was conducted to determine the efficiency of the ACE teaching 
cycle on students' comprehension of the derivative concept with a discrete approach based on two 
experimental and control groups, with the experimental group receiving the independent variable 
"ACE" as well as pre-test and post-test interventions. To compare the outcomes, this study used a 
pre-test-post-test design with a control group.  

4.2. Participants  

The study population included all undergraduate computer engineering students in the first 
semester of one of Iran's universities who were studying in the academic year 2022-2023. 42 
participants in total were chosen using a practical sample technique, and the experimental and 
control groups were randomly split into 2 groups of 21. Every pupil freely took part in the current 
research.  

4.3. Process and Data Collection 

First, a pre-test was given to determine the homogeneity of the groups at the start of the semester. 
The results showed that both groups were homogeneous and equal. Then, a genetic analysis was 
created for instructing and learning the derivative concept with a discrete approach (Table1). 
Second, all students in the experimental group participated in a GeoGebra software lab class for 
6hrs (1.5 hours every week for 4 weeks). Based on the genetic analysis presented in the first step, 
the ACE cycle, which was designed using this software for the derivative concept with a discrete 
approach, was taught in the experimental group. The students in the control group only wrote 
notes on the whiteboard during ordinary class sessions. Third, after completing the training 
course, the post-test was performed on both groups, and the results were analyzed by analysis of 
covariance. 

4.3.1. Designing ACE teaching cycle for derivative concept  

Cycle 1: Computer-based activities. In the first stage, the classroom was held in the computer 
workshop during a two-hour session, where the students participated in the tasks based on the 
computer program in groups (groups of 3 people). The purpose of the computer activities stage 
was for the students to build the mental structures needed to understand the derivative concept 
with a discrete approach. The instructor helped them in the computer workshop when the groups 
had problems writing functions in the Geogebra software or when their program had an error.  
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Table 1 
Genetic Decomposition of derivative concept with the discrete approach 
The concepts that are considered so that students can understand the concept of the derivative with a 
discrete approach are: 

 A concept of sequence and differential sequence. 

 Functions defined on the domains 𝑍 and 𝑄 as well as 𝑅. 

 Differential function of 𝑍-function, operations with functions, and coordination of analytical and 
geometric representation of 𝑍-function and its differential function. 

 Differential subtraction function, operation with functions, and coordination of analytical and 
geometric representation of function 𝑓(𝑧𝑛) and 𝐷𝑓𝑛(𝑧𝑛). 

The Z-function and the differential function of the differential subtraction function should be coordinated by 
obtaining the differential function from Z-functions (quadratic), polynomial Z-functions, and exponential 
functions. The differential function with domain Z may be considered as the slope of the function between 
the points (𝑧, 𝑓(𝑧)) and (𝑧 + 1, 𝑓(𝑧 + 1)). These actions become a process that transfers this idea from the 𝑍-
function to the functions defined in the Q subset to create a process that can be thematized in the form of 

𝐷𝑓𝑛(𝑧𝑛) =
𝑓(𝑧𝑛+

1

𝑛
)−𝑓(𝑧𝑛)

1

𝑛

, 𝑧𝑛 ∈ 𝑧𝑛 = {… , −
1

𝑛
, −

2

𝑛
, 0,

1

𝑛
,

2

𝑛
, … } differential fraction function with the coordination 

of analytical and geometrical representations. 

We select a constant value of 𝑧0 ∈ zn with a total value of 𝑥0 ∈ 𝐷∁𝑅 and consider the differential fraction 
sequence for the real function f according to the value 𝑥0 for 𝑛 ={1,2,3,.....}. 

n→ 𝐷𝑛(𝑥0) =
𝑓(𝑥0+

1

𝑛
)−𝑓(𝑥0)

1

𝑛

 and the transformation process required to communicate its various 

representations is internalized. When this process is extended to the real function f of the fractional 
differential function 𝐷𝑛(𝑥0), the concept of the instantaneous rate of change is constructed as an object 
because of a particular relation between the function 𝑓(𝑥0) and 𝐷𝑛(𝑥0) is compressed. Students can use a 
discrete approach to answer any derivative problem when the aforementioned acts, processes, and objects 
are arranged into a logical schema.  

 

Whenever the program for each activity was written, the students ran their program on several 
functions to understand the primary purpose of each activity. The first activity focused on 
obtaining the differential function and drawing the graph of the differential function of 𝑍-
functions (quadratic), polynomial Z-functions, and exponential functions with the 𝑍 domain. The 
differential function 𝐷𝑓(𝑧) with the domain of Z can be considered as the slope of the function 
between the points (𝑧 + 1, 𝑓(𝑧 + 1)), (𝑧, 𝑓(𝑧)). The details of the first activity are given below. 

Task 1: First, the students were instructed to write a program 𝐴1 in Geogebra that receives 
functions 𝑍 (quadratic), polynomial 𝑍, and an exponential with domain 𝑍 as input. The outputs 
were the differential function of the above functions and drawing graphs of the function (𝑧) and 
their differential function. The aforementioned method is written in GeoGebra by the uses of these 
commands: 

For Z-function (quadratic): 

 

For the polynomial Z-function (cubic): 
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For the exponential function: 

 

Task 2: Students were asked to use Program A1 for the following inputs: 

 

Figure 1  
The output of task 2 for the first computer activity (item 1) 

 

Figure 2  
The output of task 2 for the first computer activity (item 2) 
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Figure 3  
The output of task 2 for the first computer activity (item 3) 

 
In the 2nd  task, students created a Geogebra approach to graph the differential fraction function 

of Z-functions (quadratic), polynomial Z-functions, and exponential functions with a domain 

z10 =
𝑧

10
(𝑧𝜖𝑍). At this stage, the idea of the function Z was transferred to the functions defined in 

the subset Q that form the differential fraction function. The details of the third activity are as 
follows. 

Task 1: The students were instructed to write an A2 program in Geogebra that receives functions Z 

(quadratic), polynomial Z, and an exponential with the domain Z10=
𝑍

10
 as input, and the outputs 

are the differential fraction function of each of the above functions and draw the graph of the 
function f(z10) and Df10(z10). The above method is written in Geogebra as follows: 
For Z-function (quadratic): 

 

For the polynomial Z-function (cubic): 

 

For the exponential function: 
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Task 2: Students were introduced to employee Program 𝐴2 for the following entries: 

 

Figure 4 
The output of task 2 for the second computer activity (item 1) 

 

Figure 5 
The output of task 2 for the second computer activity (item 2) 

 

Figure 6 
The output of task 2 for the second computer activity (item 3) 

 

The differential subtraction function of z10 
from the f function f 

 

The differential subtraction function of z10 
from the f function f 

 

The differential subtraction 
function of z10 from the f 
function f 
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The third activity expands the second activity so that the differential fraction sequence for the 
real function f is obtained according to the value of x0 for , n={1,2,3,…}. The sequence is interpreted 
according to the graph f of the sequence of decisive slope at a point obtained if    n → ∞, the 
function’s derivative. The details of the third activity are as follows:  

Task 1: The students were instructed to write a 𝐴3 program in Geogebra first, which receives 
quadratic functions, and polynomials (for example, degree 3) with domain R as input. The outputs 
must be the differential fraction function and the limit of the differential fraction function at 
infinity of each of the above functions. The mentioned method is written in Geogebra as follows: 

 
       Task 2: Students were instructed to employ the A3 program for the following inputs: 

 

Figure 7 
The output of task 2 for the third computer activity (items 1 and 2) 

 

Cycle 2: Class Discussions. The second session was held in the classroom. Class discussions were 
held following the three computer-based activities, where students could express their ideas, 
thoughts, and understanding of each activity. In addition, they were instructed to use logic rather 
than geometry to solve each activity. Students could then use their comprehension of computer 
activities on paper. Regarding the first activity, students were asked to define 𝑓(𝑧) and differential 
functions. Then they were given some quadratic and cubic 𝑓(𝑧) functions and an exponential 
function, and they were asked to first obtain the differential function of these functions and then 
draw their graph and explain their differential function. For the second activity, the students were 
asked to define the function 𝑓(𝑧10) and then given some functions 𝑓(𝑧10)  quadratic and cubic and 
exponential functions to calculate its differential fraction function and then draw their graphs. In 

the general case, they obtained the differential fraction function for ( 
1

𝑛
, 𝑛𝜖𝑁) quadratic and cubic, 

and exponential functions and explained the differential fraction function with the Q domain. In 
the case of the third activity, the quadratic and cubic functions with the domain R were given, and 
the differential fraction function was obtained from these real functions. Then they calculated their 
limit at infinity and expressed their interpretation of 𝐷𝑛(𝑥0).  

Cycle 3: Exercises. The exercise phase in the ACE teaching cycle reinforces the previous two 
phases (computer activities and classroom discussion). The exercises aimed for students to expand 
the schema of the discrete derivative approach by working with 𝑍-functions and their differential 
𝑍-function with the 𝑍 domain, differential fraction function with 𝑄 and 𝑅 domains, and drawing 
their graphs. These exercises were designed as night homework for students and included 
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different mathematics situations. Students strengthen their knowledge in computer activities and 
class discussions by solving exercises. Some exercises are described below. 
     Exercise 1 (related to the first computer activity): Draw the graph of 𝑍 functions and their 
differential functions 𝐷𝑓(𝑧) with a discrete approach. 

1) 𝑓(𝑧) = 4𝑧2 − 2𝑧 + 3 
2) 𝑓(𝑧) = 𝑧3 − 2𝑧 − 1 
3) 𝐸(𝑧) = 𝑒𝑧, 𝑧 ∈ 𝑍 
Exercise 2 (related to the second computer activity): for the 𝑍𝑘 function,  

𝑓(𝑧10) = 2𝑧10
2 − 5𝑧10 − 3 (𝑧10 ∈ 𝑍10), first, obtain its 𝐷𝑓10(𝑧10) and draw the graphs of both 

functions with a discrete approach. 

Exercise 3 (related to the third computer activity): A) if 𝑓(𝑥) = 𝑥2 − 5𝑥 − 8, calculate the 
derivative of the function (𝑥) using the discrete approach. B) We have filled a cylindrical source 
with a vertical axis with 2000 liters of water. If we open the valve under the source, the source will 
be empty within 5 minutes. Suppose we have opened the source valve at the moment 𝑡 = 0. 
According to one of the laws of physics, we know that the remaining water in the source after t 
minutes is equal to 𝑣(𝑡) = 2000000 − 8000𝑡 + 80𝑡2. Find the instantaneous rate of change of water 
exit from the source in t=30 minutes. 

4.4. Data Analysis 

Data analysis in the present study was descriptive and inferential. In the descriptive part, tables of 
frequency, mean, and standard deviation were used, and in the inferential part, the covariance 
analysis method was utilized using SPSS software. 

5. Results 

Table 2 presents the descriptive statistics of group scores.  

Table 2 
Descriptive statistics in experimental and control groups 
Group N SD Mean 

Experimental 21 1.50 17.57 
Control 21 2.20 14.80 

 
Table 2 shows the descriptive criteria related to the data in two control and experimental 

groups. An average of 14.80 student’s grades in teaching the discrete derivative approach in the 
control group was obtained traditionally, and an average of 17.57 of the student’s grades in 
teaching the discrete derivative method was obtained with the help of the ACE cycle. It is possible 
to understand the effectiveness of the ACE cycle on a better understanding of the derivative 
concept by comparing these two averages. However, the independent t-test table results further 
confirm this statement. First, the assumption that the variance of two groups is equal is examined 
by performing the independent t-test. 

Levene’s test is considered in Table 3 to check this hypothesis. This test’s significance level (sig) 
equals.016, smaller than.05. The equality of variances assumption is thus disproved. The second 
row of Table 3 verifies that the two experimental and control groups' average scores are equal. The 
significance level (sig) in the t-test in the second row of Table 3 equals zero, which is less than .01. 
Therefore, a considerable exist difference between the average grades of teaching the discrete 
derivative approach with the help of the ACE teaching cycle in the experimental group and 
teaching the discrete derivative approach using the routine method in the control group. 
Considering that the confidence intervals obtained have the same sign, there is a significant 
difference between the experimental and control group results. Therefore, learning derivation 
using ACE cycles beyond 90% certainty allowed us to gain a deeper comprehension of the 

derivation concept in comparison to the control group.  
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6. Discussion and Conclusion 

The current research aims at evaluating the effectiveness of the ACE teaching cycle on students' 
comprehension of the derivative concept with a discrete approach. As can be seen from the Table 
3, a considerable difference exist between the average grades of teaching the discrete derivative 
approach by ACE in the Geogebra software environment in the experimental group and teaching 
the discrete derivative approach using the routine method in the control group. Therefore, 
teaching the discrete derivative approach using the ACE cycle significantly impacts students' 
understanding of the derivative concept. It gradually led to an improved comprehension of the 
change song and moment song with the help of sequences, which shows the success of the ACE 
teaching cycle in using Geogebra software in teaching and learning the derivative concept with a 
discrete approach. the findings of this research is line with that of Asiala et al. (1997), Borji et al. 
(2019), Borji et al. (2018), and Cottrill et al. (1996), who attributes the success of students' mental 
construction to the use of the ACE teaching cycle. The results show that students in the 
experimental group performed better qualitatively in answering questions and gained a in-depth 
comprehension of derived concepts.  Evaluating the students’ answers in the experimental group 
proved that that many had made a coherent schema of the derivative concept with a discrete 
approach. Students in the experimental group improved their conceptualization of the Z function 
and the differential Z function by writing computer programmes in groups using Geogebra 
software, which led to understanding the relationship between the function and the derivative 
function. The experimental group students solved the problems in groups and had the opportunity 
to learn better from each other and explained what they solved to each other step by step in the 
group. Group work allows group members to cover each other's weaknesses. Group learning 
allows learners to discuss with each other, ask each other questions, and support each other by 
helping wherever necessary. Group work allows learners to listen to their ideas, share their ideas, 
and question each other's thinking. Control students were not given this opportunity. In the 
control group, instruction time was devoted to teacher instruction and students did not take a 
progressive act in the instruction process because instruction was routine. About two students 
were very weak in basic mathematics, including the basic questions on the concepts required to 
learn the concept of derivatives, including function, differential function, and drawing Z functions 
and their differential function. Nevertheless, the ACE teaching cycle made the students' problem-
solving skills in the field of derivation to be strengthened. The ACE teaching cycle with software 
can help teach Hesaban, especially the concept of derivative, to develop students' conceptual 
understanding. Therefore, the learning environment enriched with educational software can be 
quick feedback for students and a tool for accurate and fast visual representations of mathematical 
forms as a tool for students to manipulate mathematical structures and an opportunity to show the 
effects of these forms. The growth of students' creativity and thinking and the improvement of the 
learning of mathematical concepts, so the use of computer-based educational methods. 
Visualization and multiple representations are essential advantages of using mathematical 
educational software, which can strengthen the links between different mathematical concepts and 
create deeper learning in students. The provided feedback is a reaction to the student's learning 
behavior and includes verbal and non-verbal reactions, such as warning, drawing attention, and 
suggesting the next steps. 

Therefore, math professors should be familiar with math software to develop educational tasks 
that facilitates students' comprehension of math concepts and motivates students to employ this 
technology to improve their learning. Technology increases students' learning and should be used 
in teaching and learning mathematics is essential (NCTM,2000). 

ACE teaching cycle, along with educational software, provides a context for the innovative 
ideas of learners and can also play a decisive role in learners' academic progress and creativity. 
The results showed that this teaching cycle is more effective in developing students' thinking 
flexibility than the routine teaching method. This teaching cycle can enable learners to pay 
attention to the concept and principle of the subject and details when dealing with severe and 



A. B. Jahromi / Journal of Pedagogical Sociology and Psychology, 7(1), 1-17 16 

 

 

 

new-conceptual-level mathematical problems. The ability of learners to expand their answers is 
also enhanced. Due to the effectiveness of the ACE teaching cycle, learners will experience more 
profound and more stable learning in this learning environment. Teachers and professors can use 
the ACE teaching cycle and educational software for students' deep understanding of 
mathematical concepts and increase divergent and creative thinking. However, more research 
should be conducted to help improve students' understanding of mathematical concepts through 
this teaching cycle. 
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