
Journal of Pedagogical Sociology and Psychology
Volume 6, Issue 3, 2 0 2 4
https://doi.org/10.33902/jpsp.202426267

Research Article

The effect of block-based programming activities on the
computational thinking skills of pre-service primary
school teachers

Jan Pršala

Department of Applied Cybernetics, Faculty of Science, University of Hradec Králové, Czechia

Correspondence should be addressed to Jan Pršala jprsala@jcu.cz
Received 27 January 2024; Revised 30 April 2024; Accepted 20 May 2024

The aim of this paper was to analyse the level of computational thinking among pre-service primary
school teachers and to measure the effect of block-based activities, in a form of programming projects in
Scratch, on the computational thinking and programming skills developed by these pre-service teachers.
To assess their knowledge, the Beginners Computational Thinking Test was used. The results indicate that
pre-service teachers have a high level of understanding of sequences and loops, but low level of
understanding of conditionals. A positive statistically significant difference was found in the
understanding before and after they used Scratch.

Keywords: Students’ gender, school location, correlation, academic achievement in economics

1. Introduction

Computational thinking is increasingly becoming part of 21st century education. The essence of
computational thinking is to look at a problem as a computer scientist (Lessner, 2014). It is about
formulating problems in such a way that a computer can be effectively used to solve it (Stephens &
Buteau, 2023). Thus, computational thinking becomes important for all disciplines, for example, for
architects, doctors, or teachers (Wing, 2006). Students must use new skills, often referred to as the
components of computational thinking, to solve such problems. These include algorithmization,
abstraction, generalization, pattern recognition, and automation (Brennan & Resnick, 2012).

Programming is one of the most effective ways to develop computational thinking (Resnick et
al., 2009). However, computational thinking is not just about programming. While the goal of
teaching programming is to find a solution and then implement it in a particular programming
language, computational thinking seeks to help students understand the basic concepts and
mechanisms of digital technologies for formulating and solving problems (Bocconi et al., 2022).
Therefore, computational thinking serves as an umbrella concept that encompasses the
fundamental intellectual underpinnings necessary for understanding the digital world (Fagerlund
et al., 2020). Xia (2017) also defines programming education as supporting students to understand
the concepts of programming by problem-solving and their own experience.

In the Czech Republic, a new Framework Curriculum was introduced in 2021 (Ministry of
Education, Youth and Sports of the Czech Republic & NPI Czech Republic, 2021), which defines
"informatics" as a new area of education that focuses on developing computational thinking. Until
now, computer science topics were taught within the area of "information and communication
technologies". As this is a new area with new objectives and needs, it is important to ask whether
teachers are prepared to teach these new topics. Especially primary school teachers, as they have
often never studied computer science and have not had the opportunity to acquire the appropriate
knowledge and skills to teach computer science outside of voluntary training.

Some faculties of education are now preparing future primary school teachers for these
changes. The aim of this paper is to analyse and describe the Computational thinking of students

https://orcid.org/0000-0002-1861-4911
https://doi.org/10.33902/jpsp.202426267
mailto:jprsala@jcu.cz

J. Pršala / Journal of Pedagogical Sociology and Psychology, 6(3), 1-9 2

at the beginning of their studies and what effects block-based activities have on a level and
development of Computational thinking of these students. With this goal in mind, we asked the
following research questions:

RQ1) What is the level of Computational thinking of the future primary school teachers at the
beginning of their professional training?

RQ2) What are the differences in computational thinking skills levels of the future primary
school teachers at the beginning of their professional training?

RQ3) What is the effect of block-based activities on the future primary school teachers’
computational thinking skills?

In addition to the research questions, three conceptual hypotheses were formulated:
H1: The overall level of computational thinking will be low.
H2: There are significant differences between the levels of measured skills.
H3: Block-based activities produce a significant positive effect on the future primary school

teachers’ computational thinking skills.

2. Background

2.1. Block-based Programming and Computational Thinking

One of the ways to help develop pupils’ Computational thinking is to use programming problem-
solving activities (Ramos & Espadeiro, 2014). There are many existing learning tools, such as
Scratch, Makecode, Minecraft, Baltík, Kodu, Blockly. Piedade et al. (2019) picked and described 26
of these block-based programming environments and analysed how fit they are for teaching
programming, design algorithms and developing Computational thinking.

We decided to use Scratch as our main tool for assessment of computational thinking skills of
pre-service primary school teachers. Scratch is a free block-based programming environment,
which was developed by the Scratch Foundation (Scratch, 2023). Several studies were conducted to
analyse if Scratch is a good starting point for learning for students with little to no knowledge in
programming (e.g. Sáez-López et al., 2016; Sigayret et al. 2022) with positive outcome. Blocks in
Scratch are differentiated by colour and shape, which helps pupils to quickly find blocks they need
(Weintrop & Wilensky, 2015). There are over 100 blocks divided into 9 categories, but there is also
an option to add more blocks via various extensions. For example, Scratch can work with a
programmable minicomputer BBC microbit. Each block represents a statement or some
programming concept (Montiel & Gomez-Zermeño, 2021), which means pupils don’t have to learn
and memorize vocabulary specific for a given programming language. This greatly reduces syntax
errors tied to wrongly written functions or sequences (Weintrop & Wilensky, 2017). Each block has
a clear description of what it does. Scratch allows students to focus on finding a solution to given
problems without worrying about the right syntax. But this can also lead to some pupils searching
through all available blocks to see if one of them can solve the problem rather than having to think
about it (Vaníček, 2019).

Another reason why we picked Scratch was because it is a popular choice among computer
science teachers in the Czech Republic and most programming textbooks for primary schools are
written for Scratch (Kalaš & Miková, 2020). Therefore, pre-service teachers should get familiar with
Scratch during their studies, because they will most likely use it during their teaching.

2.2. Assessment of Computational Thinking Skills

Since computational thinking is a relatively new concept not only in the Czech Republic, but also
in the world, there are not many tools measuring the level of computational thinking. Since the
interest in Computational Thinking development is growing in recent years, several studies were
conducted that focused on defining methods and tools for the evaluation and analysis Computer
Thinking skills (Basso et al., 2018; Brennan & Resnick, 2012; Fagerlund et al., 2020; Román-
González, 2015; Zapata-Cáceres et al., 2020).

J. Pršala / Journal of Pedagogical Sociology and Psychology, 6(3), 1-9 3

Román-González et al. (2019) defined 7 possible approaches and tools for measuring
computational thinking: diagnostic tools, summative tools, formative-interactive tools with
automatic feedback, data mining tools, skill transfer tools, perception and attitude scales, and
verbal assessments. Poulakis and Politis (2021) defined three ways in which the level of
computational thinking can be assessed. These categories are 1) Using a particular programming
environment, 2) Using psychometric tools, and 3) Using a combination of the two previous
approaches.

Brennan and Resnick (2012) developed a framework for studying and measuring the
development of Computational Thinking for Scratch-based tasks. This framework is organized in
three dimensions, each of them focusing on different aspects of teaching programming. These
dimensions are: Computational Concepts, Computational Practices and Computational
Perspectives. Computational Concepts describe the use of programming concepts such as loops,
sequences, events, operators and conditionals. Computational Practices are related to practices
students develop during solving programming tasks, such as debugging their errors or using their
already created code to build something new. Computational Perspectives describes students'
perspectives of the computational world around them.

Another popular tool for analysing Scratch projects is Dr. Scratch (Moreno-León & Robles,
2015). It’s a web-based application for automatic analysis of Scratch projects. It can identify coding
errors and provide suggestions for improvements. It classifies Computational thinking concepts on
a three-point scale. Because of this, it has difficulties analysing more complex projects.

In recent years, several tests and psychometric tools have been developed to measure the level
of computational thinking. The Computational Thinking Test (Ambrosio et al., 2014) is a test that
uses multiple choice questions to analyse the respondent's programming abilities. Román-
González (2015) further developed and validated this test on students aged 10-15 years.

For our purposes, we chose to use the Beginners Computational Thinking Test (BCTt) (Zapata-
Cáceres et al., 2020). The test contains 25 questions, which are divided into 6 categories that are
closely related to programming and computational thinking - Sequences, Loops, Nested Loops, If-
Then, If-Then-Else, and While. Table 1 shows the absolute and relative representations of the
questions of each category in the test. As you can see, most of the questions in the test focused on
Loops and Nested Loops.

Table 1
The distribution of BCTt test questions by category
Category N %

P1 4 16
P2 4 16
P3 7 28
P4 2 8
P5 2 8
P6 6 24

This test does not assume any prior knowledge of computer science or programming and is not
dependent on any particular programming environment. The tasks are presented either in the
form of a maze, in which respondents must help a chick to get to a chicken, or in the form of a
canvas on which they must draw a given picture. There are always 4 possible answers, but only
one of them is correct. It should be noted that the BCTt does not assess competencies, but rather
allows us to measure the students’ knowledge and skills regarding concepts associated with
Computational thinking (Piedade & Dorotea, 2023). We’ll refer to them as computational thinking
skills in this paper. Figure 1 shows an example of a BCTt task.

J. Pršala / Journal of Pedagogical Sociology and Psychology, 6(3), 1-9 4

Figure 1
An exmaple of a BCTt task (Zapata-Cáceres et al., 2020)

This test was primarily used to measure the level of computational thinking skills in 4th grade

students in elementary school. But since our lectures were done using tasks originally designed for
4th and 5th grade of elementary school, we found it most appropriate to use this test to also
measure the level of computational thinking skills of pre-service primary school teachers. The test
was translated into Czech language.

4. Methodology

4.1. Research Design

Due to the nature of the research and the impossibility of dividing the students into control and
experimental groups, we chose a quasi-experimental pre-test post-test research design. The
students' level of Computational thinking was first measured at the beginning of their studies,
before they took any of the mentioned classes. Then, students took a programming class, which
spanned four months, from February to May. We then again measured their Computational
thinking levels and analysed the results.

4.2. Participants

Our research sample was students of the study primary school education programme at the
Faculty of Education of the University of South Bohemia in České Budějovice. They were first year
students who had not yet encountered informatics during their studies. In the first three years of
their studies, students in this field have compulsory informatics lessons - programming in the 1st
year, robotics in the 2nd year and didactics of informatics and practice in the 3rd year. A total of 53
students participated in the research, 2 of them male and the rest female.

4.3. Data Analysis

Our quantitative data were analysed using The R Project for Statistical Computing and Microsoft
Excel. Several statistical tests were applied during the analysis. We checked the reliability of our
data using Pearson correlation coefficient and Cronbach’s Alpha. To answer our first research
question, we calculated descriptive statistics of our pre-test data. To answer the second research

J. Pršala / Journal of Pedagogical Sociology and Psychology, 6(3), 1-9 5

question, we used a non-parametric Kruskal-Wallis test. To answer our third research question, we
used a parametric test paired t-test. We also used the Shapiro-Wilk test to check if our data follow
the normal distribution. Before analysing our data and answering our research questions, we first
analysed the reliability of our data.

4.4. Reliability

To test the reliability of our data, we calculated Pearson correlation coefficient. The results indicate
high correlation between our pre-test and post-test scores (ρ=0.67). We also calculated Cronbach’s
Alpha coefficient to measure internal consistency of the BCTt scores. The analysis of the
Cronbach's Alpha coefficients of the test from the pre-test and post-test scores also revealed very
good internal consistency (Table 2). These results are similar to the reliability of the original BCTt
calculated by the authors (α=.82; N=299).

Table 2
Internal consistency of pre-test and post-test samples
Sample Cronbach’s Alpha coefficient

Pre-test 0.703
Post-test 0.789
Note. N=53 for both tests.

5. Results

5.1. The Level of Computational Thinking of the Future Primary School Teachers

To answer our first research question, we analysed the results of the pre-test. Table 3 shows a
statistical analysis of the results. The overall average is high (M=20.17, Me=20). Three students
achieved the maximum number of points. The minimum number of points was 13. Only one
student scored this low.

Table 3
The Descriptive Statistics for the pre-test results of the pre-service primary school teachers
Descriptive Statistics Statistics Boxplot of mean score

Mean 20.17

Median 20

Variance 6.99

Standard Deviation 2.64

Minimum 13

Maximum 25

5.2. The Differences in Computational Thinking Skills Levels of the Future Primary School
Teachers

Next, we focused on analysing the results by category. We then performed a Kruskal-Wallis test to
see if these differences are statistically significant. The results indicate that there is a significant
difference between categories (𝑝 = .00). Table 4 shows the statistical analysis for each category.
Students were most successful in the first 3 categories - Sequences, Loops and Nested Loops. They
performed best on questions in the Loops category. Students were more successful in solving these
types of problems compared to the If-Then and If-Then-Else categories. Students performed the
worst in the While category. These results, together with the results of Kruskal-Wallis test, confirm
our hypothesis H2 that there are significant differences between the levels of measured skills.

J. Pršala / Journal of Pedagogical Sociology and Psychology, 6(3), 1-9 6

Table 4
The demographics of the recruited study participants
Category Number of questions Mean Median

Sequences 4 3.91 4
Loops 4 3.96 4
Nested Loops 7 6.85 7
If-Then 2 1.01 1
If-Then-Else 2 1.49 2
While 6 2.86 2

5.3. The effect of Block-based Activities on the Future Primary School Teachers’ Computational
Thinking Skills

The analysis of the effect of block-based activities on the computational thinking skills of future
primary school teachers started with calculating the differences between pre-test and post-test
scores. We analysed the normality of data using the Shapiro-Wilk test. The results indicate that the
BCTt scores differences follow a normal distribution (𝑊 = 0.96, 𝑝 = .070). Figure 2 shows the
histogram of our data with the respective normality curve.

Figure 2
Histogram of the scores differences

We then used paired t-test to analyse the statistical significance of these differences. The results

(𝑝 = .040) revealed that there is a significant difference between pre-test and post-test results. After
that we compared the percentage of correct answers of each category during pre-test and post-test.
The Figure 4 shows that there is a visible difference between pre-test and post-test percentage of
correct answers. The success rate for sequences, loops and nested loops stayed almost the same,
since they were near 100% from the beginning, but there is a huge difference in success rate of the
following categories. The biggest change is in the while category, in which the success rate got up
22%. These results confirm our hypothesis H3 about the positive effect of block-based
programming activities on the pre-service primary school teachers’ computational thinking skills.

J. Pršala / Journal of Pedagogical Sociology and Psychology, 6(3), 1-9 7

Figure 4
Success rate per each category

6. Discussion and Conclusion

The study sought to describe the impact of block-based programming activities on the
computational thinking skills of primary school pre-service teachers at the beginning of their
studies. In addition, we examined their computational thinking at the start of their studies, before
any formal computer science teaching had occurred.

The analysis of the results of the pre-test showed that students have a good understanding of
sequences and loops, but have a poor understanding of conditionals. Their understanding of the
concepts of sequences and loops were almost perfect, which resulted in the high scores from the
test. The biggest problem was caused by the tasks involving the If-Then statement, especially by
the tasks with the right answer having a condition that wasn’t met. For example, if the chicken was
standing on heart and the answer at that moment said “if the chicken is standing on the star, then”,
then some students became confused and couldn’t answer properly. Another problem was
involving a while statement. Some students couldn’t decide when the while statement ends and
that lead to the wrong answers.

The analysis of the effect of block-based programming activities was also positive. The
differences in the pre-test and post-test results are statistically significant. The usage of block-based
programming activities had a positive effect on the pre-service teachers’ results. Activities
involving problem-solving or creation of projects like simple games or animations have an evident
effect on the level of the computational thinking skills not only promote the development of
computational thinking skills but also contribute to the application of knowledge from other
curricular areas (Piedade & Dorotea, 2023).

Thus, we can argue that regular project development, problem-solving, and game creation
using block-based programming languages are crucial for student interest and success. These
exercises support the application of information from other subject areas in addition to fostering
the growth of computational thinking abilities. Primary school programming could encourage
initiatives that imitate or gamify other subject areas (Fagerlund et al., 2020). According to Brennan
and Resnick (2012), Scratch has shown to be a great resource for creating projects that support
computational principles, especially for younger pupils.

The test selected for this study (Zapata-Cáceres et al., 2020), despite being developed and tested
on 4th grade students, proved to be adequate for pre-service teachers, because their understanding
of computational thinking skills is similar. The results regarding the reliability of the test proved to
be similar to the results of the original authors’ validation of the test.

J. Pršala / Journal of Pedagogical Sociology and Psychology, 6(3), 1-9 8

Future research should assess pre-service primary school teachers' practices and perspectives
on computational thinking in addition to examining their basic understanding of computational
ideas. An enhanced comprehension of the abilities and expertise obtained by aspiring primary
school teachers will be possible through the evaluation of these three dimensions as suggested by
Brennan and Resnick (2012) in their framework. In order to achieve this, it will be crucial to
organize challenges and problems that let students investigate computational techniques like
testing and debugging, reusing and remixing, abstracting, and expressing their computational
viewpoints on how computing affects daily life. In primary school classrooms, teachers and
educators are increasingly in need of evidence-based pedagogical expertise to assist kids' CT
learning through programming.

Declaration of interest: No conflict of interest is declared by author.

Funding: No funding was received for undertaking this study.

References

Ambrosio, A. P., Almeida, L. da S., Franco, A., & Macedo, J. (2014). Exploring core cognitive skills of
computational thinking. The Psychology of Programming Interest Group-University of Liverpool.

Basso, D., Fronza, I., Colombi, A., & Pahl, C. (2018). Improving assessment of computational thinking
through a comprehensive framework. In M. Joy & P. Ihantola (Eds.), ACM Proceedings of the 18th Koli
Calling International Conference on Computing Education Research (pp. 1-5). Association for Computing
Machinery. https://doi.org/10.1145/3279720.3279735

Bocconi, S., Chioccariello, A., Kampylis, P., Dagienė, V., Wastiau, P., Engelhardt, K., Earp, J., Horvath, M.A.,
Jasutė, E., Malagoli, C., Masiulionytė-Dagienė, V. & Stupurienė, G. (2022). Reviewing Computational
thinking in compulsory education. Publications Office of the European Union.
https://doi.org/10.2760/126955

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational
thinking. Annual Meeting of the American Educational Research Association.

Fagerlund J, Häkkinen P, Vesisenaho M, & Viiri J. (2020). Computational thinking in programming with
Scratch in primary schools: A systematic review. Computer Applications in Engineering Education, 29(1), 12-
28. https://doi.org/10.1002/cae.22255

Kalaš, I., & Miková, K. (2020). Základy programování ve Scratch pro 5. ročník zš [Basics of programming in
Scratch for the 5th year of elementary school]. Jihočeská univerzita v Českých Budějovicích, České
Budějovice.

Lessner, D. (2014). Analysis of the meaning of the term "Computational thinking”. Journal of Technology and
Information Education, 6(1), 71-88. https://doi.org/10.5507/jtie.2014.006

Ministry of Education, Youth and Sports of the Czech Republic & NPI Czech Republic. (2021). Nová
informatika v RVP ZV [New informatics in RVP ZV]. Author.

Montiel, H., & Gomez-Zermeño, M. (2021). Educational challenges for computational thinking in K–12
education: A systematic literature review of "Scratch" as an innovative programming tool. Computers, 10,
69. https://doi.org/10.3390/computers10060069

Moreno-León, J., & Robles, G. (2015). Dr. Scratch: A web tool to automatically evaluate Scratch projects.
ACM International Conference Proceeding Series, 15, 132–133. https://doi.org/10.1145/2818314.2818338

Piedade, J., & Dorotea, N. (2023). Effects of Scratch-based activities on 4th-grade students’ computational
thinking skills. Informatics in Education, 22(3), 19. https://doi.org/10.15388/infedu.2023.19

Piedade, J., Dorotea, N., Ferrentini, F.S., & Pedro, A. (2019). A cross-analysis of block-based and visual
programming apps with computer science student-teachers. Education Sciences, 9(3), 181.
https://doi.org/10.3390/educsci9030181

Poulakis, E., & Politis, P. (2021). Computational thinking assessment: literature review. In T. Tsiatsos, S.
Demetriadis, A. Mikropoulos, & V. Dagdilelis (Eds.), Research on E-Learning and ICT in Education (pp. 111-
128). Springer. https://doi.org/10.1007/978-3-030-64363-8_7

Ramos, J. L., & Espadeiro, R. G. (2014). Os futuros professores e os professores do futuro. Os desafios da
introdução ao pensamento computacional na escola, no currículo e na aprendizagem [Future teachers
and teachers of the future. The challenges of introducing computational thinking in school, in the

https://doi.org/10.1145/3279720.3279735
https://doi.org/10.2760/126955
https://doi.org/10.1002/cae.22255
https://doi.org/10.5507/jtie.2014.006
https://doi.org/10.3390/computers10060069
https://doi.org/10.1145/2818314.2818338
https://doi.org/10.15388/infedu.2023.19
https://doi.org/10.3390/educsci9030181
https://doi.org/10.1007/978-3-030-64363-8_7

J. Pršala / Journal of Pedagogical Sociology and Psychology, 6(3), 1-9 9

curriculum and in learning]. Educação, Formação e Tecnologias, 7(2), 4–25.
http://hdl.handle.net/10174/14227

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A.,
Rosenbaum, E., Silver, J., Silverman, B., & Kafai, Y. (2009). Scratch: programming for all. Communications
of the ACM, 52, 60-67. https://doi.org/10.1145/1592761.1592779

Román González, M. (2015, July). Computational thinking test: Design guidelines and content validation [Paper
presentation]. 7th International Conference on Education and New Learning Technologies, IATED
Academy, Barcelona, Spain.

Román González, M., Moreno Léon, J., & Robles, G. (2019). Combining assessement tools for a
comprehensive evaluation of computational thinking interventions. In S. C. Kong, & H. Abelson (Eds.),
Computational thinking education (pp. 79-98). Springer. https://doi.org/10.1007/978-981-13-6528-7_6

Sáez-López, J.-M., Román-González, M., Vázquez-Cano, E. (2016). Visual programming languages integrated
across the curriculum in elementary school: A two year case study using “Scratch” in five schools.
Computers & Education, 97, 129–141. https://doi.org/10.1016/j.compedu.2016.03.003

Scratch. (n.d.). About Scratch. Author. https://scratch.mit.edu/
Sigayret, K., Tricot, A., & Blanc, N. (2022). Unplugged or plugged-in programming learning: A comparative

experimental study. Computers & Education, 184, 104505. https://doi.org/10.1016/j.compedu.2022.104505
Stephens, M., & Buteau, C. (2023). Introduction to the special issue on “Computational thinking and

mathematics teaching and learning”. Journal of Pedagogical Research, 7(2), 1-4.
https://doi.org/10.33902/JPR.202313362

Vaníček, J. (2019). Early programming education based on concept building. Constructivist Foundation, 14(3),
360–372.

Weintrop, D., & Wilensky, U. (2015). Using commutative assessments to compare conceptual understanding
in blocks-based and text-based programs. In B. Dorn & J. Sheard (Eds.), ICER '15: Proceedings of the
eleventh annual International Conference on International Computing Education Research (pp.101-110).
Association for Computing Machinery. https://doi.org/10.1145/2787622.2787721

Weintrop, D., & Wilensky, U. (2017). How block-based languages support novices: a framework for
categorizing block-based affordances. Journal of Visual Languages and Sentient Systems, 3, 92-100.
https://doi.org/10.18293/VLSS2017-006

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49, 33-35.
https://doi.org/10.1145/1118178.1118215

Xia, B. S. (2017). A pedagogical review of programming education research: what have we learned.
International Journal of Online Pedagogy and Course Design, 7(1), 33–42. https://doi.org/10.4018/IJOP-
CD.2017010103

Zapata Cáceres, M., Martín Barroso, E., & Román González, M. (2020). Computational thinking test for
beginners: Design and content validation. In A. Cardoso, G. R. Alves, & M. T. Restivo (Eds.), Proceedings
of the IEEE Global Engineering Education Conference (EDUCON 2020) (pp. 1905-1914). Educon.
https://doi.org/10.1109/EDUCON45650.2020.9125368

http://hdl.handle.net/10174/14227
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1007/978-981-13-6528-7_6
https://doi.org/10.1016/j.compedu.2016.03.003
https://scratch.mit.edu/
https://doi.org/10.1016/j.compedu.2022.104505
https://doi.org/10.33902/JPR.202313362
https://doi.org/10.1145/2787622.2787721
https://doi.org/10.18293/VLSS2017-006
https://doi.org/10.4018/IJOP-CD.2017010103
https://doi.org/10.4018/IJOP-CD.2017010103
https://doi.org/10.1109/EDUCON45650.2020.9125368

